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1 Introduction

The high morbidity and mortality of stroke has caused a social and economic
burden in contemporary society. The underlying mechanisms of stroke are not fully
understood. Changes of cerebral hemodynamics might be one of the critical factors
that cause stroke. There are several techniques to detect the hemodynamic alter-
ations, one of which is through computer simulation by solving partial differential
equations that describe the physics of the blood flow. For example, there are some
numerical studies of blood flow through a total cavopulmonary connection (Bazilevs
et al., 2009), the coronary (Taylor et al., 2013), cerebral aneurysms (Boussel et al.,
2009; Cebral et al., 2005; Takizawa et al., 2011), and cerebrovascular arteries,
which is the focus of this paper (Moore et al., 2005). In general, solving a fluid
flow problem with complex geometry in 3D is difficult. In this work, we employ
a Newton-Krylov-Schwarz (NKS) algorithm for solving large nonlinear systems
arising from a fully implicit discretization of the incompressible Navier-Stokes
equations using the Galerkin/least squares (GLS) finite element method. NKS has
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been applied for simple blood flowmodel problems previously (Hwang et al., 2010).
In this work, we apply the algorithm to a patient-specific cerebrovascular problem
that is more complicated, since the cerebrovascular artery has ischaemic stenosis,
and the vessel wall is atherosclerotic. The rest of the paper is organized as follows.
In the next section, we provide a description of the governing equations of blood
flow in cerebral arteries, the finite element discretization, and the parallel NKS based
solution algorithm. In Sect. 3, numerical results and parallel performance study are
presented. Some concluding remarks are given in Sect. 4.

2 Blood Flow Model, Discretization, and Solution Algorithm

We assume that the blood flow is isothermal, incompressible, Newtonian and
laminar, and modeled by the unsteady Navier-Stokes equations,
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� r � � D 0 in ˝ � .0;T/;

r � u D 0 in ˝ � .0;T/;

u D 0 on �wall � .0;T/;

u D g on �in � .0;T/;

� � n D 0 on �out � .0;T/;

u D u0 in ˝ at t D 0;

(1)

where u=.u1; u2; u3/
T is the velocity field, � is the fluid density, and � is the Cauchy

stress tensor defined as � D �pI C 2�D, where p is the pressure, I is the identity
tensor, � is dynamic viscosity, and the deformation rate tensorD D 1

2
ŒruC.ru/T �.

˝ 2 R3 is the computational domain, with three boundaries �in, �out and �wall; �in

is the surface of the inlet, �out contains the surfaces of all outlets, and �wall is the
vessel wall. To close the flow system, some proper boundary conditions need to
be imposed. We impose a uniform velocity, g, for the velocity on �in; a stress-free
boundary condition on �out, and a no-slip boundary condition on �wall.

To discretize (1), we employ a P1 � P1 GLS finite element method for
the spatial domain, and an implicit first-order backward Euler scheme for the
temporal domain (Wu and Cai, 2014). The GLS finite element takes the following
form (Franca and Frey, 1992): Find u.nC1/

h 2 Vg
h and p.nC1/

h 2 Ph, such that

B.u.nC1/
h ; p.nC1/

h I v; q/ D 0; 8.v; q/ 2 V0
h � Ph
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with

B.u; pI v; q/ D
�
u � u.n/

�t
C .ru/u; v

�

C .�ru; rv/ � .r � v; p/

C
X

K2T h

�
u � u.n/

�t
C .ru/u C rp; 	GLS..rv/u � rq/

�

K

�.r � u; q/ C .r � u; ıGLSr � v/;

where V0
h and V

g
h are the weighting and trial velocity function spaces respectively.Ph

is a linear finite element space for the pressure and used for both the weighting and
trial pressure function spaces. u.n/ is the velocity vector at the current time step, and
u and p (we drop the superscript .n C 1/ here for simplicity) are unknown velocity
and pressure at the next time step. � is the kinematic viscosity. �t is the time step
size. Note that T h D fKg is a tetrahedral mesh. We use the stabilization parameters
	GLS and ıGLS suggested in Franca and Frey (1992). The GLS formulation can be
written as a nonlinear algebraic system

F.x/ D 0; (2)

where x is the vector of nodal values of the velocity and the pressure.
We apply NKS to solve (2). NKS is an inexact Newton method in which

the Jacobian systems are solved by an one-level Schwarz preconditioned Krylov
subspace method, briefly described as follows: Let x.k/ be the current approximation
of x, and x.kC1/ the new approximation computed by the substeps:

Step 1: Solve the following preconditioned Jacobian system approximately by
GMRES to find a Newton direction s.k/,

JkM
�1
k y D �F.x.k//; with s.k/ D M�1

k y; (3)

where Jk is the Jacobian of F evaluated at Newton step k, and M�1
k is a right

preconditioner.
Step 2: Obtain the new approximation with a linesearch method,

x.kC1/ D x.k/ C 
.k/s.k/; (4)

where 
.k/ is a step length parameter.

We define the additive Schwarz preconditioner in the matrix form as

M�1
k D

NX

iD1

.Rh
i /

TJ�1
i Rh

i ;
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where J�1
i is the inverse of the subspace Jacobian Ji D Rh

i J.Rh
i /

T . We denote Rh
i as

the global-to-local restriction operator and .Rh
i /

T as the local-to-global prolongation
operator. The multiplication of J�1

i with a vector is solved by a direct solver such
as sparse LU decomposition or an inexact solver such as ILU with some level of
fill-ins.

3 A Case Study and Discussions

We consider a pair of patient-specific cerebrovascular geometries provided by the
Beijing Tiantan Hospital, as shown in Fig. 1. The pair of cerebral arteries belongs to
the same patient before and after the cerebral revascularization surgery respectively.
In Fig. 1, the left artery has a stenosis in the middle, the right figure shows the same
artery after the stenosis is surgically removed. Our numerical simulations provide
a valuable tool to understand the change of the dynamics of the blood flow in the
patient and the impact of the surgery. For convenience, let us denote the artery with
a stenosis as “pre” and the repaired artery as “post”. Table 1 lists the number of
vertices, elements and unknowns of the finite element meshes that we generate for
solving the flow problems.

The blood flow is characterized with density � D 1:06 g/cm3, and viscosity
� D 0:035 g=.cm � s/. The inflow velocity profile is shown in Fig. 2. The time
step size is �t D 10�2 s. For the algorithm parameters, the overlapping size for
the Schwarz preconditioner is set to be ı D 1, and subdomain linear system is
solved by ILU(1). The Jacobian system is solved inexactly by using an additive
Schwarz preconditioned GMRES with relative stopping condition 10�4. We define
Newton convergence with a relative tolerance of 10�6 or an absolute tolerance of
10�10. To observe the behavior of the blood flow in systolic and diastolic phases,

Fig. 1 3D tetrahedral meshes before and after the surgery. The narrowing cerebral artery with a
local refinement at the stenosed segment (left) and the repaired cerebral artery (right)
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Table 1 Mesh information
for two cerebrovascular
geometries

Mesh # of vertices # of elements # of unknowns

Pre 441,475 2,208,337 1,765,900

Post 287,936 1,360,588 1,151,744

Fig. 2 Inflow velocity profile for 5 cardiac cycles discretized with 500 time steps

we respectively plot the numerical solutions at t D 2:54 s and t D 3:2 s. Figure 3
shows the relative pressure distributions, and Fig. 4 shows the streamlines whose
color indicates the velocity magnitude.

We focus on the comparison between the “pre” and “post” cases. Figure 3 shows
that the range of the relative pressure value of the “pre” case is more than double
that of the “post” case at the systolic and diastolic phases. Moreover, as shown in
the same figure, the relative pressure ratio between the anterior and posterior parts
of the stenosed portion in the “pre” case is large, and the relative pressure value of
the “post” case at the repaired portion has a smaller variation. From the streamline
plots, the blood flow is more disordered in the “pre” case than in the “post” case
during both the diastolic period and the systolic period. In addition, the maximum
of the velocity occurs at the stenosed portion in the “pre” case, and the variation
of the velocity distributions in the repaired portion is quite small. Similar to the
pressure distribution, the range of velocity magnitude of the “pre” case is wider
than the “post” case.

We use the “post” case to test the parallel performance, and the simulation is
carried out for 10 time steps. Numerical results are summarized in Table 2. “np”
is the number of processor cores. “NI” denotes the number of Newton iterations
per time step, “LI” denotes the average number of GMRES iterations per Newton
step, “T” represents the total compute time in seconds and “EFF” is the parallel
efficiency. It is clear that for the iteration counts, the algorithm is not sensitive
to the overlapping size ı. For fixed np, the number of average GMRES iterations
decreases as the levels of fill-ins increases. The number of Newton iterations is
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Fig. 3 Relative pressure distributions at t D 2:54 s (top) and t D 3:2 s (bottom) for pre (left) and
post (right)

almost independent of the overlapping size for the Schwarz preconditioner and
levels of fill-ins of subdomain solvers, and the average number of GMRES iterations
increases slightly as the number of processor cores grows. Hence, we claim that
NKS is quite robust for the test cases presented in this paper. For the best algorithmic
parameter selection of ILU fill level 2, and small overlap of 0 or 1, about 70%
relative efficiency is achieved in strong scaling between 32 and 128 processor cores.
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Fig. 4 Streamlines at t D 2:54 s (top) and t D 3:2 s (bottom) for pre (left) and post (right)

4 Concluding Remarks

We simulated blood flows in a pair of patient-specific cerebral arteries during 5
cardiac cycles by a fully implicit finite element discretization method and a Newton-
Krylov-Schwarz algebraic solver. The simulations show clearly that the physics of
the blood flow is more complicated before the surgery than after the surgery, and
the stenosis causes a large variation of the pressure and velocity field. As to the
NKS algorithm itself, we showed that the algorithm is robust with respect to the
overlapping size for the Schwarz preconditioner and levels of fill-ins of subdomain
solvers. A reasonably good scalability is observed with up to 128 processor cores.
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Table 2 Parallel
performance of NKS with up
to 128 processor cores

np Subsolver ı NI LI T EFF (%)
32 ILU(0) 0 3 820:5 2860 100

1 3 814:1 2650 100

2 3 832:3 2805 100

3 3 838:2 2761 100

ILU(1) 0 2:9 351:8 1698 100

1 2:9 351:9 1717 100

2 2:9 360:7 1741 100

3 2:9 366:5 1805 100

ILU(2) 0 2:8 248:2 1563 100

1 2:8 248:1 1666 100

2 2:8 247:1 1600 100

3 2:8 251:2 1663 100

64 ILU(0) 0 2:9 828:1 1438 99

1 2:9 828:1 1413 94

2 3 839:3 1495 94

3 3 845:1 1527 90

ILU(1) 0 2:9 384:2 966 88

1 2:9 384:4 973 88

2 2:9 372:0 970 90

3 2:9 388:2 1042 87

ILU(2) 0 2:8 289:5 931 84

1 2:8 290:1 920 91

2 2:8 266:3 906 88

3 2:8 266:3 941 88

128 ILU(0) 0 3 842:9 845 85

1 3 843:0 836 79

2 3:6 876:5 1089 64

3 3:9 914:0 1584 44

ILU(1) 0 2:9 428:7 610 70

1 2:9 428:2 617 70

2 2:9 437:1 719 60

3 2:9 443:1 932 48

ILU(2) 0 2:8 324:8 570 69

1 2:8 324:8 572 73

2 2:8 300:9 583 69

3 2:8 286:2 596 70
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