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Abstract—A parallel domain decomposition method is intro-
duced for numerical design of an optimal bypass for a partially
blocked artery. The optimal bypass is described as the solution
of a shape optimization problem governed by the steady-state
incompressible Navier-Stokes equations that are used to model
the blood flow. The problem is discretized with a finite element
method on unstructured moving meshes and then solved by a
parallel one-shot Lagrange-Newton-Krylov-Schwarz algorithm.
In order to accelerate the convergence of the inexact Newton
method, we introduce a two-level inexact Newton method which
solves a coarse grid problem to generate a good initial guess for
the fine grid inexact Newton method. Numerical experiments
show that our algorithms perform well on a supercomputer
with hundreds of processors.

Keywords-shape optimization; one-shot method; parallel
computing; domain decomposition method; finite element
method

I. INTRODUCTION

Arterial stenosis is the narrowing of certain part of an
artery and, in medical practice, the fix usually requires a
new route (artery bypass graft) around the stenosed artery
that allows the blood to flow smoothly in the artery∗. There
are some publications that study numerically the blood flow
through arterial stenosis; see [13], [14], [15] and references
therein. But there are few publications dedicated to the
optimal design of the artery bypass graft; see e.g., [1], [19],
[21] and [22]. The design problem is computationally very
expensive, and large scale computing is absolutely necessary.
In this paper, we use a parallel one-shot Lagrange-Newton-
Krylov-Schwarz method, which has the potential to solve
very large problems (e.g., three-dimensional problems on
machines with a large number of processors) to numerically
design the artery bypass graft of a partially blocked artery
in two-dimensional domain.

The goal of the artery bypass design is to find the best
shape of the bypass graft such that a certain property of the
flow is optimized. In this paper we focus on the minimization
of the shear stress (represented by the integral of the
squared shear rate) of the blood flow which is a critically
important criterion for artery bypass design problems [1].
Before introducing the mathematics model, we recall some
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notations: For a scalar function φ, a vector-valued function
u = (u, v) and matrices A = (aij)n×n, B = (bij)n×n, we
denote

∇φ :=

(
∂φ

∂x
,
∂φ

∂y

)
, ∇ · u :=

∂u

∂x
+

∂v

∂y
,

and

A :B :=
n∑

i=1

n∑
j=1

aijbij .

The artery bypass design problem is described mathemati-
cally by the following shape optimization problem governed
by the steady-state incompressible Navier-Stokes equations
defined in a two-dimensional domain Ωα

min
u,α

Jo(u, α) = 2μ

∫
Ωα

ε(u) :ε(u)dxdy +
β

2

∫
I

(α′′)2ds

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−μΔu+ u · ∇u+∇p = f in Ωα,
∇ · u = 0 in Ωα,

u = g on Γinlet,
u = 0 on Γwall,

μ
∂u

∂n
− p · n = 0 on Γoutlet,

α(a) = z1, α(b) = z2.

(1)

Here Ωα ∈ R2 is the computational domain and the
subscript α is a shape function determined by a set of
parameters a = (a1, a2, ..., ad) which determines the shape
of the computational domain and d is the number of design
variables. u = (u, v) and p represent the velocity and pres-
sure of the blood flow, n is the outward unit normal vector
on ∂Ωα and μ is the kinematic viscosity. Γinlet, Γoutlet

and Γwall represent the inlet, outlet and wall boundaries,
respectively; see Figure 1. f is the given body force and g
is the given velocity at the inlet Γinlet. In the constraints,
the first five equations are the Navier-Stokes equations
and boundary conditions that are used to model the blood
flow and the last two equations indicate that the optimized
boundary should be connected to the rest of the boundary
and z1 and z2 are two given constants. In the objective
function, ε(u) = 1

2 (∇u+(∇u)T ) is the deformation tensor
which reflects the shear stress of the blood flow [1] and
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Figure 1. Simplified two-dimensional bypass model; the red boundary Γoptimized denotes the part of the boundary whose shape is to be determined by
the optimization process. Here l1 = 6.0, l2 = 3.0, l3 = 1.9, d1 = 0.6, d2 = 0.2 and |AB| = 0.8.

β is a nonnegative constant that controls the amount of
regularization added to the objective function. I = [a, b] is
an interval in which the shape function α(x) is defined. The
last term of the objective function is a regularization term
providing the regularity of ∂Ωα [8]. In some approaches
(e.g., [1] and [11]) some restrictions of the geometry are
included in the constraints, e.g., certain thickness or volume,
instead of a regularization term in the objective function.

II. MOVING MESH FINITE ELEMENT METHOD FOR SHAPE
OPTIMIZATION PROBLEM

A. Mesh moving strategies

Since the computational domain of the shape optimization
problem changes during the optimization process, the mesh
needs to be modified to follow the computational domain.
One can either reconstruct a new mesh, a process known as
remeshing, or move the old mesh to obtain a new mesh
following some rules, which is referred to as a moving
mesh method. Remesh guarantees a good new mesh but it
is computationally expensive and moving mesh changes the
locations of the mesh points but keeps the number of mesh
points and the connectivity unchanged, which is cheaper but
the deformed mesh may become ill-conditioned when the
boundary variation is large. In this paper, we focus on the
moving mesh strategy where we only need to call the mesh
generator once before the parallel solver begins. Another
reason to use the moving mesh method instead of remesh is
that we use the overlapping domain decomposition method
in our algorithm and the moving mesh method does not
change the mesh topology, so we can reuse the partition of
the initial mesh when the mesh changes. In moving mesh
methods, one can model the mesh movement either by a
Laplace equation or a linear elasticity equation [25]. The
elasticity equation is more difficult to solve than the Laplace
equation but it often offers a better new mesh. We prefer the
latter approach. Let α0 be the initial shape of the boundary

and Ωα0
the initial computational domain. We define x0 as

the coordinate of a point in Ωα0 , x as the coordinate of
the corresponding point in Ωα and δx := x − x0 as the
displacement of this point. When the point x0 moves, we
assume the displacement δx satisfies the following equations:{ ∇ · σ = 0 in Ωα0 ,

δx = gα on ∂Ωα0
,

(2)

where σ is the stress tensor defined as

σ = λTr(ε)I+ 2με.

Here ε = 1
2 (∇δx +∇δx

T), Tr is the trace, I is an identity
operator, λ and μ are the Lamé constants. gα = (gxα, g

y
α) is

the displacement on the boundary determined by the shape
function α(x). Note that gα is not a given function, but a
function obtained automatically during the iterative solution
process.

B. Discretization of shape optimization problem

To numerically solve the shape optimization problem (1),
one can either apply an optimization approach on the con-
tinuous level, e.g., the Lagrange multiplier method, to obtain
the continuous optimal system and then discretize and solve
it, or one can discretize problem (1) to obtain a finite di-
mensional constrained optimization problem and then use a
discrete optimization method to solve it. These two strategies
are called optimize-then-discretize (OTD) and discretize-
then-optimize (DTO), respectively. The main difference of
these two approaches is the boundary conditions for the
adjoint equations associated with the Lagrange multipliers.
In the OTD approach, the boundary conditions for the adjoint
equations are obtained by the shape calculus [23] and in the
DTO approach, such boundary conditions are not necessary
since the adjoint problem is obtained algebraically. We only
consider the DTO approach in this paper.

Our methods begin with discretizing the state equations
(1) with a LBB-stable Q2 − Q1 finite element method and
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moving mesh equations (2) with a Q2 finite element method
to obtain a finite dimensional constrained optimization prob-
lem

min
uh,a,δhx

Jho (u
h,a, δhx) = μ(uh)TJhuh +

β

2
Jα

subject to⎧⎪⎪⎨
⎪⎪⎩

Khuh +Bh(uh)uh −Qhph = Fh
f + Fh

u,

(Qh)Tuh = 0,
Dhδhx = Fh

x,
Aa = Fa,

(3)

where h is the mesh size parameter and Kh, Bh(uh),
Qh and Dh are the coefficients of the discretized Navier-
Stokes equations and linear elasticity equations. Fh

f is the
discretized body force. Fh

u and Fh
x refer to the Dirichlet

boundary conditions for uh and δhx , respectively, and Aa

and Fa are the geometric constraints. Jh and Jα are the
coefficients of the discretized objective function. Note that
Kh, Bh(uh), Qh and Jh depend on the grid displacement
δhx , while Dh is independent of δhx . In our approaches, the
mesh variable δhx is treated as an optimization variable and
the moving mesh equations are viewed as constraints of
the optimization problem which are solved simultaneously
with the other equations. This makes our algorithms very
simple, and it does not require a sensitivity analysis as in
the traditional algorithms [24].

III. ONE-SHOT LAGRANGE-NEWTON-KRYLOV-
SCHWARZ METHODS

In the last several decades, the typical approach for solv-
ing shape optimization problems considers the state variables
u and p as functions of the design variable α and only
regards the design variable as the optimization variable. The
method is called nested analysis and design (NAND). NAND
splits the optimality system of (1) into three components: the
state equations for the constraints, the adjoint equations for
the Lagrange multipliers, and the design equations for the
shape design parameters, and then iteratively solves the three
components; see [1], [16] and [21]. This method involves an
iterative algorithm (nonlinear block Gauss-Seidel iteration)
and needs to solve the state equations repeatedly, which is
computationally expensive when the state equations are com-
plicated, such as the Navier-Stokes equations. In addition,
the three components have to be solved one after another;
such a sequential approach is not desirable on machines
with a large number of processors. An alternative to this
approach is the simultaneous analysis and design (SAND),
or the so-called one-shot approach, which views the state
variables and design variable independently and solves the
three components of the optimality system simultaneously
(similar to applying a Newton-Krylov method to the fully
coupled system); see [2], [9] and [10]. The challenges of the
one-shot approach are that we need to solve a large nonlinear
system (two to three times larger than the state equations),

and the Jacobian system of the nonlinear system is also
much larger and a lot more ill-conditioned. To answer these
challenges, we need to design a good preconditioner that
can substantially reduce the condition number of the large
fully coupled system and, at the same time, provides the
scalability for parallel computing. The advantages of one-
shot approaches are their higher degree of parallelism and
that none of the three components needs to be solved accu-
rately until the end of the optimization process. In this paper,
we study the one-shot method combined with the parallel
Lagrange-Newton-Krylov-Schwarz (LNKSz) method for a
particular shape optimization problem.

The one-shot LNKSz begins with reducing the discretized
optimization problem (3) to a nonlinear equations problem
(Karush-Kuhn-Tucker (KKT) system) using a Lagrange mul-
tiplier method [17]

Gh(Xh) ≡ ∇XhLh(Xh) = 0, (4)

where Xh ≡ (
uh, ph, δhx, λh

u, λh
p, λh

x, a, λa
)T

and
Lh(Xh) is the Lagrangian functional associated with prob-
lem (3) defined as

Lh(Xh) = μ(uh)TJhuh +
β

2
Jα

+(λh
u)

T ·(Khuh +Bh(uh)uh −Qhph − Fh
f − Fh

u)

+(λh
p)

T ·((Qh)Tuh)

+(λh
x)

T ·(Dhδhx − Fh
x) + (λa)T ·(Aa − Fa),

and λh
u, λh

p, λh
x and λa are the Lagrange multipliers for the

equality constraints.
Then the nonlinear KKT system (4) is solved by an inex-

act Newton method which begins with a given initial guess
Xh

0 , at each iteration, k = 0, 1, · · ·, a search direction dh
k

is obtained by approximately solve the right-preconditioned
system satisfying

‖ Hh
k(M

h
k)

−1(Mh
kd

h
k)+Gh

k ‖≤ max{ηhr ‖ Gh
k ‖, ηha}, (5)

where Hh
k = ∇XhGh(Xh

k) is the Jacobian matrix of the
nonlinear system (4), Gh

k = Gh(Xh
k) and ηhr and ηha are

relative and absolute tolerances for the linear solver. (Mh
k)

−1

is an additive Schwarz preconditioner to be defined below.
To define the additive Schwarz preconditioner, we need

an overlapping partition of Ωα. Since the mesh topology
doesn’t change when the shape of the domain changes, we
obtain the partition using the initial mesh on Ωα0

. We first
partition the domain Ωα0

into non-overlapping subdomains
Ωαl

, l = 1, · · · , Np and then extend each subdomain Ωαl
to

Ωδ
αl

which overlaps its neighbors, i.e., Ωαl
⊂ Ωδ

αl
. Here δ is

the size of the overlap which is understood in terms of the
number of elements; i.e., δ = 8 means the overlapping size
is 8 layers of elements, and Np is the number of subdomains
which is equal to the number of processors (np) in this paper.
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Then the additive Schwarz preconditioner is defined as [26]

(Mh
k)

−1 =

Np∑
l=1

(Rδ
l )

T(Hh
k)

−1
l Rδ

l ,

where (Hh
k)l = Rδ

l Hh
k (Rδ

l )
T, Rδ

l is a restriction operator
from Ωα to the lth overlapping subdomain. The subdomain
preconditioners (Hh

k)
−1
l (l = 1, 2, · · · , Np) are computed

by a sparse LU factorization. After approximately solving
(5), we use a line search approach to globalize the inexact
Newton method, where the new approximate solution is

Xk+1 = Xk + τkdk,

and the step length τk is selected by a cubic line search
method [6].

Finding a good initial guess is very important for Newton
type methods. In this paper, we try to find a good initial
guess for problem (4) by solving a coarse problem which
is defined with exactly the same method as the original
discrete optimization problem but on a coarser grid, i.e.,
the initial guess Xh

0 = IhHXH , where IhH is a coarse to fine
interpolation operator to be defined shortly and XH is the
solution of a coarse grid problem denoted as

GH(XH) = 0, (6)

i.e., the KKT system on a coarse grid. The coarse-level
problem (6) is solved by a similar inexact Newton method
(change the subscript h to H) as that for the fine-level
problem described above. We call this method a two-level
inexact Newton method ([5], [27]).

The coarse to fine interpolation operator IhH is a Nf ×Nc

matrix, where Nf and Nc are the degrees of freedom on the
fine grid and the coarse grid, respectively. The components
of IhH are defined as

(IhH)ij = φH
j (xh

i ), (7)

i.e. the value of the jth coarse grid function φH
j at the ith

fine grid point xh
i . In practice the function φH

j (x) doesn’t
have to be the same as the finite element basis function used
to generate the coarse-level problem, in fact, we use here a
radial basis function [5]. We tested some other interpolation
methods and concluded that the radial basis function is
more efficient for our problem. Unfortunately, the initial
guess Xh

0 interpolated from the coarse-level solution XH

using, straightforwardly, the interpolation matrix (7) does
not reduce the initial residual of the fine-level problem as
expected. This is because the Lagrange multiplier λh

x has a
sharp jump at the moving boundary which the interpolation
operator (7) cannot resolve on the coarse grid. To resolve
this jump, we have to modify the interpolation operator in a
way that is motivated by the “pollution removing technique”
introduced in [20]. Besides the sharp jump at the moving
boundary, another observation is that the value of λh

x on the
moving boundary decreases following the mesh refinement.

To illustrate this situation, we take the derivative of the
Lagrangian functional Lh(Xh) with respect to the design
variable α

nx∑
i=1

(
λ
x

i

∂gx
α(x

h
i )

∂α
+ λ

y

i

∂gy
α(x

h
i )

∂α

)
= −β

2

∂Jα

∂α
, (8)

where λ
x

i and λ
y

i (i = 1, 2, · · · , nx) are the Lagrange
multipliers related to the mesh displacements δhxi

and δhyi

(i = 1, 2, · · · , nx) on the moving boundary, nx is the number
of finite element nodes on the moving boundary and xh

i is
the coordinate of the ith node on the moving boundary. In
equation (8), ∂Jα/∂α, ∂gx

α/∂α and ∂gy
α/∂α are functions

of α that change a little following the mesh refinement but
nx increases a lot following the same mesh refinement, as a
result, the values of λ

x

i and λ
y

i (i = 1, 2, · · · , nx) decrease
following the mesh refinement. The standard interpolation
operator (7) does not respect this phenomenon. In order to
reflect this, we modify the components of the interpolation
operator (7) related to the Lagrange multipliers λ

x

i and λ
y

i

(i = 1, 2, · · · , nx) on the moving boundary by dividing a
factor γ = nh

x/n
H
x , where nh

x and nH
x are the numbers of

finite element nodes on the moving boundary of the fine
and coarse meshes, respectively. We show numerically in
the next section that the interpolation operator (7) combined
with the modifications works very well for the problem
under consideration.

IV. NUMERICAL EXPERIMENTS

In this section, we present some numerical results con-
cerning the optimal design of the artery bypass graft and
we mainly focus on the parallel performance of the domain
decomposition preconditioner which is the most critical
component of the one-shot approach. Our algorithm is
implemented using PETSc [3], a Portable, Extensible Toolkit
for Scientific computation developed at Argonne National
Laboratory. All computations are performed on a Dell
PowerEdge C6100 supercomputer (1368 compute nodes,
each node contains two hex-core 2.8Ghz Intel Westmere
processors and the nodes are interconnected via a non-
blocking QDR Infiniband high performance network theo-
retically capable of 40Gbps) at the University of Colorado
at Boulder. Unstructured meshes generated with CUBIT
[18] from Sandia National Laboratory and partitioned with
ParMETIS [12] are used in the numerical experiments.

Without the blockage (as in Figure 1) the blood flow
is supposed to go from AB to IJ , but now we assume
that the artery is partly blocked at DE and we need a
bypass CH to let the blood go through. For simplicity, the
thickness of CH is fixed. The goal is to find the best shape
of the bypass CH , such that the shear stress of the fluid
in the entire computational domain Ωα is minimized. For
simplicity, we let the body forces f = 0 in the state equations
(1). The boundary condition on the inlet Γinlet is chosen as
a constant vin, no-slip boundary conditions are used on the
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walls Γwall and on the outlet boundary Γoutlet the stress-
free boundary conditions are imposed; see (1). We use a
polynomial function

r(θ) =
d∑

i=1

riθ
i,

with d = 5 to represent the centerline of the bypass (see the
dashed line in Figure 1) whose shape is to be determined by
the optimization process. Other shape functions can be used,
but here we simply follow the paper [1]. In the moving mesh
equations (2), the Lamé constants λ and μ are are related to
the Young’s modulus E and the Poisson’s ratio ν by

λ =
νE

(1 + ν)(1 + ν)
, μ =

E

2(1 + ν)
.

E = 10000 and ν = 0 are used in our experiments as
suggested in [4].

An analytic Jacobian matrix is used in all the experiments.
The Jacobian system in each Newton step is solved by a
right-preconditioned GMRES with an absolute tolerance of
10−10 and a relative tolerance of 10−3. The Newton iteration
is stopped when the nonlinear residual is decreased by a
factor of 10−6.

Figure 2 shows the shear rate distribution of the initial and
the optimal shape of the bypass graft where the shear stress
of the optimal shape (bottom) is 10.9% less than that of the
initial shape (top). The centerline of the initial shape is a
semicircle of radius 2.7 and the centerline of the computed
optimal shape is

r(θ) = −0.005θ5+0.042θ4−0.1θ3+0.342θ2−0.866θ+2.7.

Figure 3 and Figure 4 show the streamline and pressure
distribution of the initial shape and the optimal shape. In
Figure 3, we can see that there is more vorticity in the initial
shape than that in the optimal shape and Figure 4 shows that
the maximum pressure of the initial shape (35.81) is larger
than that of the optimal shape (32.47).

The parallel performance of the one-level and two-level
inexact Newton methods is shown in Table I, where the num-
ber of Newton iterations (Newton) stays as a constant when
the number of processors increases and the average number
of GMRES iterations per Newton step (GMRES) increases
slowly following the increase of np. From Table I, we
can see that the two-level inexact Newton method not only
reduces the number of Newton iterations, but also reduces
the average number of GMRES iterations in each Newton
step. The headings “Time” and “Time ratio (coarse/fine)”
in Table I refer to the total compute time in seconds and
the percentage of the total compute time spent on solving
the coarse-level problem, respectively. The speedup curves
of the one-level and two-level inexact Newton methods are
shown in Figure 5, where the blue line is the linear speedup
which means that doubling the number of processors halves

Figure 2. Shear rate distribution of the initial shape (top) and the optimal
shape (bottom). Here β = 5.0 and Re = 300.

Figure 3. The streamline of the initial shape (top) and the optimal shape
(bottom). Here β = 5.0 and Re = 300.
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Figure 4. Pressure distribution of the initial shape (top) and the optimal
shape (bottom). Here β = 5.0 and Re = 300.

Table I
Comparison of the one-level inexact Newton method (One) and the

two-level inexact Newton method (Two). Here the degrees of freedom on
the fine grid is 1.6× 106 and that on the coarse grid is 4.0× 105.

np Newton GMRES Time
Time ratio

(coarse/fine)
One Two One Two One Two One Two

32 6 5 162.83 136.00 2393.08 2229.84 0 6.8%
64 6 5 191.00 169.40 1004.60 864.04 0 12.7%
128 6 5 254.83 203.80 681.68 552.43 0 33.3%
256 6 5 303.67 209.60 526.66 380.06 0 43.5%

the total compute time, and the red line and pink line refer to
the speedup of the two-level method and one-level method,
respectively. It is clear that the two-level method is better
when the number of processors is large.

In overlapping domain decomposition methods, the over-
lap size δ is a very important parameter for adjusting the
strength of the preconditioner. Increasing δ can reduce the
number of GMRES iterations but increases the amount of
information transfer between subdomains which is expen-
sive. Table II shows the performance of the algorithms with
different values of the overlap size δ. To obtain good results
in terms of the total compute time, the overlap has to be
quite large. This is very different from solving scalar elliptic
equations where small overlap (δ = 1) is usually enough
[7]. Table III shows the performance of our method with
respect to various Reynolds numbers Re and regularization
parameter β. The heading “Reduction” in Table III refers
to the reduction of the shear stress. A higher percentage of

32 64 128 256
1

2

3

4

5

6

7

8

Number of processors

S
p
e
e
d
u
p

 

 

Ideal
One−level Newton
Two−level Newton

Figure 5. The speedup of the one-level and two-level inexact Newton
methods for two different mesh sizes (the speedup is relatively measured
to the performance obtained with 32 processors).

Table II
The effect of the overlap size δ for the one-level inexact Newton method
and the inexact two-level Newton method. Here the degrees of freedom is

1.6× 106 on the fine grid and 4.0× 105 on the coarse grid .

np δ
Newton GMRES Time

One Two One Two One Two
64 14 6 7 228.50 181.14 1016.32 1025.11
64 16 6 5 191.00 169.00 1005.59 868.80
64 18 6 5 172.50 157.80 1131.80 897.23
128 14 6 5 271.67 231.00 707.86 525.30
128 16 6 5 254.33 203.80 674.83 552.43
128 18 6 5 209.33 196.67 732.49 619.67

reduction is achieved when the Reynolds number is large
or the regularization parameter is small but the problem
becomes harder to solve when the Reynolds number is
increased or the regularization parameter is decreased.

V. CONCLUSION

In this paper, we developed a parallel one-shot Lagrange-
Newton-Krylov-Schwarz method for an artery bypass design
problem. We obtained an optimal bypass graft which reduces
the shear stress by over 10%. In order to accelerate the
convergence of the inexact Newton method, we introduced
a two-level inexact Newton method which solves a coarse
grid problem to generate a good initial guess for the fine
grid inexact Newton method. The numerical experiments
show that our algorithm is very efficient for large problem
(over 2.8 million degrees of freedom) on a machine with up
to 256 processors. The two-level inexact Newton method
is robust with respect to the Reynolds number Re and
the regularization parameter β, and its strong scalability is
also better than the one-level inexact Newton method. Even
though we only studied an artery bypass design problem in
this paper, our algorithm can be extended to other shape
optimization problems and three-dimensional problems.
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Table III
The effect of the Reynolds number (Re) and the regularization parameter (β) for the one-level inexact Newton method and the two-level inexact Newton

method. Here the degrees of freedom is 2.8× 106.

Re β
Newton GMRES Time Time ratio (coarse/fine)

Reduction
One Two One Two One Two One Two

100 15 5 5 122.80 162.20 918.79 957.48 0 4.9% 0.3%
200 15 4 5 223.00 210.60 921.62 1016.76 0 7.8% 2.4%
300 15 7 5 266.71 230.20 1538.11 1071.04 0 25.8% 6.7%
100 12 5 5 122.80 167.80 901.38 960.48 0 4.7% 0.4%
200 12 4 5 233.00 213.00 933.93 1043.07 0 7.6% 2.9%
300 12 10 5 292.40 230.20 2157.92 1072.93 0 27.3% 7.7%
100 10 6 5 127.83 168.80 1024.61 1026.46 0 4.6% 0.5%
200 10 5 5 249.20 215.40 1125.70 1067.06 0 7.7% 3.3%
300 10 20 5 327.50 219.00 4378.57 1039.10 0 33.7% 8.5%

ACKNOWLEDGMENT

We would like to thank Andrew T. Barker, Yuqi Wu, and
Chao Yang for many discussions and comments and the
PETSc team of Argonne National Laboratory for their help
on using the PETSc library. We would like to acknowledge
the support of NSF under DMS-0913089. The work of
the first author was done while visiting the University
of Colorado at Boulder and was partially supported by
China Scholarship Council (CSC) and NSF China under No.
10971058.

REFERENCES

[1] F. Abraham, M. Behr, and M. Heinkenschloss, Shape op-
timization in stationary blood flow: A numerical study of
non-Newtonian effects, Comput. Methods Biomech. Biomed.
Engrg., 8 (2005), pp. 127-137.

[2] E. Arian and S. Ta’asan, Shape optimization in one-shot,
In: Optimal Design and Control, J. Boggaard et al (Eds.),
Birkhauser, Boston, 1995, pp. 273-294.

[3] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D.
Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H.
Zhang, PETSc Users Manual, Technical report ANL-95/11,
Argonne National Laboratory, 2011.

[4] R. T. Biedron and J. L. Thomas, Recent enhancements to
the FUN3D flow solver for moving-mesh applications, AIAA-
2009-1360, 2009.

[5] A. Barker and X.-C. Cai, Two-level Newton and hybrid
Schwarz preconditioners for fluid-structure interaction, SIAM
J. Sci. Comput., 32 (2010), pp. 2395-2417.

[6] J. E. Dennis and R. B. Schnable, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, SIAM,
Philadelphia, 1996.

[7] M. Dryja and O. Widlund, Domain decomposition algorithms
with small overlap, SIAM J. Sci. Comput., 15 (1994), pp. 604-
620.

[8] M. D. Gunzburger, Perspectives in Flow Control and Optimiza-
tion: Advances in Design and Control, SIAM, Philadelphia,
2003.

[9] O. Ghattas and C. Orozco, A parallel reduced Hessian SQP
method for shape optimization, In: Natalia M. Alexandrov and
M.Y. Hussaini, eds., Multidisciplinary Design Optimization:
State of the Art, SIAM, Philadelphia, 1997, pp. 133-152.

[10] S. B. Hazra, Multigrid one-shot method for aerodynamic
shape optimization, SIAM J. Sci. Comput., 30 (2008), pp.
1527-1547.

[11] B. He, O. Ghattas, and J. F. Antaki, Computational strate-
gies for shape optimization of time dependent Navier-Stokes
flow, Technical Report CMU-CML-97-102, Carnegie-Mellon
University, 1997.

[12] G. Karypis, METIS/ParMETIS web page, University of Min-
nesota, 2011. http://glaros.dtc.umn.edu/gkhome/views/metis.

[13] M. Li, J. Beech-Brandt, L. John, P. Hoskins, and W. Easson,
Numerical analysis of pulsatile blood flow and vessel wall
mechanics in different degrees of stenoses, J. Biomech., 40
(2007), pp. 3715-3724.

[14] Q. Long, L. Luppi, C. Konig, V. Rinaldo, and S. Das, Study
of the collateral capacity of the circle of Willis of patients with
severe carotid artery stenosis by 3D computational modeling,
J. Biomech., 41 (2008), pp. 2735-2742.

[15] Q. Long, X. Xu, K. Ramnarine, and P. Hoskins, Numerical
investigation of physiologically realistic pulsatile flow through
arterial stenosis, J. Biomech., 34 (2001), pp. 1229-1241.

[16] B. Mohammadi and O. Pironneau, Optimal shape design for
fluids, Annu. Rev. Fluid Mech., 36 (2004), pp. 255-279.

[17] J. Nocedal and S. J. Wright, Numerical Optimization, First
ed., Springer-Verlag, Berlin, 2000.

[18] S. J. Owen and J. F. Shepherd, CUBIT project web page,
2011, http://cubit.sandia.gov/.

[19] M. Probst, M. Lülfesmann, M. Nicolai, H. Bücker, M. Behr,
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