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1 Introduction

Shape optimization aims to optimize an objective function by changing the shape of
the computational domain. In recent years, shape optimization has received consid-
erable attentions. On the theoretical side there are several publications dealing with
the existence of solution and the sensitivity analysis of the problem; see e.g., [6] and
references therein. On the practical side, optimal shape design has played an impor-
tant role in many industrial applications, for example, aerodynamic shape design [7],
artery bypass design [1, 10], and so on. In this paper, we propose a general frame-
work for the parallel solution of shape optimization problems, and study it in detail
for the optimization of an artery bypass problem.

For PDE constrained optimization problems, there are two basic approaches:
nested analysis and design and simultaneous analysis and design (one-shot meth-
ods). As computers become more powerful in processing speed and memory capac-
ity, one-shot methods become more attractive due to their higher degree of paral-
lelism, better scalability, and robustness in convergence. The main challenges in the
one-shot approaches are that the nonlinear system is two to three times larger, and
the corresponding indefinite Jacobian system is a lot more ill-conditioned and also
much larger. So design a preconditioner that can substantially reduce the condition
number of the large fully coupled system and, at the same time, provides the scalabil-
ity for parallel computing becomes a very important stage in the one-shot methods.
There are several recent publications on one-shot methods for PDE constrained op-
timization problems. In [5], a reduced Hessian sequential quadratic programming
method was introduced for an aerodynamic design problem. In [4], a parallel full
space method was introduced for the boundary control problem where a Newton-
Krylov method is used together with Schur complement type preconditioners. In [9]
and [8], an overlapping Schwarz based Lagrange-Newton-Krylov approach (LNKSz)
was investigated for some boundary control problems. As far as we know no one has
studied shape optimization problems using LNKSz, which has the potential to solve
very large problems on machines with a large number of processors (np). The previ-
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ous work on LNKSz doesn’t consider the change of the computational domain which
makes the study much more difficult and interesting.

2 Shape Optimization on a Moving Mesh

We consider a class of shape optimization problems governed by the stationary in-
compressible Navier-Stokes equations defined in a two dimensional domain Ωα . Our
goal is to computationally find the optimal shape for part of the boundary ∂Ωα such
that a given objective function Jo is optimized. We represent the part of the boundary
by a smooth function α(x) determined by a set of parameters a = (a1,a2, . . . ,ap). By
changing the shape defined by α(x), one can optimize certain properties of the flow.
In this paper, we focus on the minimization of the energy dissipation in the whole
flow field and use the integral of the squared energy deformation as the objective
function [6]

min
u,α

Jo(u,α) = 2μ
∫

Ωα
ε(u):ε(u)dxdy+

β
2

∫
I
(α ′′)2dx

subject to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−μΔu+u ·∇u+∇p = f in Ωα ,
∇ ·u = 0 in Ωα ,

u = g on Γinlet ,
u = 0 on Γwall ,

μ
∂u
∂n

− p ·n = 0 on Γoutlet ,

α(a) = z1, α(b) = z2,

(1)

where u = (u,v) and p represent the velocity and pressure, n is the outward unit
normal vector on ∂Ωα and μ is the kinematic viscosity. Γinlet , Γoutlet and Γwall rep-
resent the inlet, outlet and wall boundaries, respectively; see Fig. 1. f is the given
body force and g is the given velocity at the inlet Γinlet . ε(u) = 1

2 (∇u+(∇u)T) is the
deformation tensor for the flow velocity u and β is a nonnegative constant. I = [a,b]
is an interval in which the shape function α(x) is defined. In the constraints, the first
five equations are the Navier-Stokes equations and boundary conditions and the last
two equations indicate that the optimized boundary should be connected to the rest
of the boundary and z1 and z2 are two given constants. The last term in the objective
function is a regularization term providing the regularity of ∂Ωα .

The optimization problem (1) is discretized with a LBB-stable (Ladyzhenskaya-
Babuška-Brezzi) Q2 −Q1 finite element method. Since the computational domain of
the problem changes during the optimization process, the mesh needs to be modified
following the computational domain. Generally speaking, there are two strategies to
modify the mesh. One is mesh reconstruction which often guarantees a good new
mesh but is computationally expensive. The other strategy is moving mesh which
is cheaper but the deformed mesh may become ill-conditioned when the boundary
variation is large. In our test case the boundary variations are not very large, so we
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Fig. 1. The initial domain Ωα0 (dashed line) and deformed domain Ωα (solid line) over a
simple mesh. The boundary Γoptimized (ED) denotes the part of the boundary whose shape is
computed by the optimization process

use the latter strategy. The moving of the mesh is simply described by Laplace’s
equations. { −Δδx = 0 in Ωα0 ,

δx = gα on ∂Ωα0 ,
(2)

where δx is the mesh displacement and gα = (gx
α ,g

y
α) is the displacement on the

boundary determined by α(x). Note that gα is obtained automatically during the
iterative solution process. For example, in Fig. 1, gx

α = 0 and gy
α = α(x)− α0(x).

The Eqs. (2) are discretized with a Q2 finite element method. The discretized shape
optimization problem is given as follows

min
u,a,δx

Jo(u,a,δx) = μuTJu+
β
2

Jα

subject to⎧⎪⎪⎨
⎪⎪⎩

Ku+B(u)u− Qp = Ff +Fu,
QTu = 0,
Dδx = Fx,
Aa = Fa.

(3)

Here Ff refers to the discretized body force, Fu and Fx refer to the Dirichlet boundary
condition for u and δx, respectively, and Aa and Fa are the geometric constrains. Note
that K, B(u), Q and J depend on the grid displacement δx, while D is independent of
δx. Here δx is treated as an optimization variable and the moving mesh equations are
viewed as constraints of the optimization problem which are solved simultaneously
with the other equations.

3 One-Shot Lagrange-Newton-Krylov-Schwarz Methods

We use a Lagrange multiplier method to transform the optimization problem (3)
to a nonlinear system G(X) = 0 which is solved by an inexact Newton method.
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Given an initial guess X0, at each iteration, k = 0,1, · · · , we use a GMRES method
to approximately solve the preconditioned system

Hk(Mk)−1(Mkdk) = −Gk, (4)

to find a search direction dk, where Hk = ∇X G(Xk) is the Jacobian matrix of the
nonlinear function, Gk = G(Xk) and (Mk)−1 is an additive Schwarz preconditioner
[11] defined as

(Mk)−1 =
Np

∑
l=1

(Rδ
l )

T(Hk
l )

−1Rδ
l ,

where Hk
l = Rδ

l Hk (Rδ
l )

T, Rδ
l is a restriction operator from Ωα to the overlapping

subdomain, δ is the size of the overlap which is understood in terms of the number
of elements; i.e., δ = 8 means the overlapping size is 8 layers of elements, and Np

is the number of subdomains which is equal to np in this paper. After approximately
solving (4), the new approximate solution is defined as Xk+1 = Xk + τkdk, and the
step length τk is selected by a cubic line search.

4 Numerical Experiments

The algorithm introduced in the previous sections is applicable to general shape op-
timization problems governed by incompressible Navier-Stokes equations. Here we
study an application of the algorithm for the incoming part of a simplified artery by-
pass problem1 [2] as shown in Fig. 2. Our solver is implemented using PETSc [3].
All computations are performed on an IBM BlueGene/L supercomputer at the Na-
tional Center for Atmospheric Research. Unstructured meshes, which are generated
with CUBIT and partitioned with ParMETIS, are used in this paper.
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Fig. 2. The incoming part of a simplified bypass model; The red boundary Γoptimized denotes
the part of the boundary whose shape is to be determined by the optimization process

1 This is the incoming part of a bypass: www.reshealth.org/images/greystone/
em\delimiter"026E30F_2405.gif

www.reshealth.org/images/greystone/emdelimiter "026E30F _2405.gif
www.reshealth.org/images/greystone/emdelimiter "026E30F _2405.gif
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Without the blockage, the flow is supposed to go from AB to CD, but now we
assume that AB is blocked and the flow has to go through EF. For simplicity, we let
the thickness EF be fixed and the body force f = 0 in the Navier-Stokes equations.
The shape of the bypass is determined by the curve GH as in Fig. 2. The boundary
conditions on the inlet Γintlet are chosen as a constant vin, no-slip boundary conditions
are used on the walls Γwall . On the outlet section Γoutlet , the free-stress boundary
conditions are imposed; see (1). We use a polynomial α(x) = ∑p

i=1 aixi with p = 7 to
represent the part of the boundary that needs to be optimized. Other shape functions
can be used, but here we simply follow [1]. The goal is to compute the coefficients
a = (a1, . . . ,ap), such that the energy loss is minimized.

In all experiments, we use a hand-coded Jacobian matrix. The Jacobian system
in each Newton step is solved by a right-preconditioned restarted GMRES with an
absolute tolerance of 10−10, a relative tolerance of 10−3, and a restart at 100. We stop
the Newton iteration when the nonlinear residual is decreased by a factor of 10−6.

Fig. 3. Velocity distribution of the initial (left) and optimal shapes (right). The initial shape is
given by a straight line. β = 0.01 and Re = 100

Fig. 4. Velocity distribution of the initial (left) and optimal shapes (right). The initial shape is
given as α(x) = 0.4+0.45x2 +0.15x3. β = 0.01 and Re = 100

In the first test case, we set the Reynolds number Re = Lvin
μ to 100, where L =

1.0 cm is the artery diameter, vin = 1.0 cm/s is the inlet velocity and μ = 0.01 cm2/s.
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We solve the problem on a mesh with about 18,000 elements. β = 0.01 and the de-
grees of freedom (DOF) is 589,652. The initial shape is given by a straight line, and
Fig. 3 shows the velocity distribution of the initial (left) and optimal shapes (right).
The energy dissipation of the optimized shape is reduced by about 5.13 % compared
to the initial shape. Figure 4 is the velocity distribution of another initial shape (left)
which is given as α(x) = 0.4+0.45x2+0.15x3 and the corresponding optimal shape
(right). The reduction of the energy dissipation of this case is about 11.96 %. Fig-
ures 3 and 4 show that we can obtain nearly the same optimal shape from different
initial shapes.

In the test case showed in Fig. 3, if we add a small inlet velocity at the boundary
AB, which is equal to that the blood flow is not totally blocked, the computed optimal
shape would be different from what is shown in Fig. 3. If we move the boundary
AB towards CD (A from (−5,0) to (−3,0) and B from (−5,0.8) to (−3,0.8)), the
optimal shape is nearly the same as Fig. 3 since the flow in the “dead area” doesn’t
impact much of the optimal solution.
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Fig. 5. The initial shape and optimal shapes with different values of parameter β . DOF =
589,652 and Re = 100

The regularization parameter β in the objective function is very important for
shape optimization problems. From Table 1 we see that reducing β can increase the
reduction of the energy dissipation (“Init.”, “Opt.” and “Reduction” are the initial,
optimized and reduction of the energy dissipation in the table), but the number of
Newton (Newton) and the average number of GMRES iterations per Newton (GM-
RES) and the total compute time in seconds (Time) increase, which means that the
nonlinear algebraic system is harder to solve when β is small. This is because the
boundary of Ωα is more flexible and may become irregular when β is too small. Fig-
ure 5 shows the initial shape and the optimized shapes obtained with different values
of β . From this figure we see that β controls the boundary deformation.

To show the parallel scalability of the algorithm, two meshes with DOF =
589,652 and DOF = 928,572 are considered. The strong scalability of our algorithm
is good; see Fig. 6 and Table 2, which show that the speedup is almost linear when
np is small. As expected in one-level Schwarz methods, the preconditioner becomes
worse as the number of subdomains increases.

Table 3 shows some results for different Re. Judging from the increase of the
number of linear and nonlinear iterations, it is clear that the problem becomes harder
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Table 1. Effect of the parameter β . DOF = 589,652, Re = 100.

β Newton GMRES Time
Energy Dissipation

Init. Opt. Reduction
0.05 4 386.00 477.89 1.17 1.12 4.27%
0.01 5 441.40 600.86 1.17 1.11 5.13%

0.005 5 439.00 599.77 1.17 1.10 5.98%
0.001 6 510.67 747.78 1.17 1.10 5.98%

Table 2. Parallel scalability for two different size grids. β = 0.1, overlap = 6 and Re = 100.

np
DOF = 589,652 DOF = 928,572

Newton GMRES Time Newton GMRES Time
32 4 124.50 2959.73 — —— ——
64 4 179.25 980.48 4 146.50 2121.52
128 4 346.75 455.69 4 330.00 844.62
256 4 533.25 280.96 4 520.75 541.97
512 4 917.50 282.07 4 861.00 361.08
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Fig. 6. The speedup and the total compute time for two different mesh sizes. Re = 100

as we increase the Re. On the other hand, we achieve higher percentage of reduction
of energy dissipation in the harder to solve situations.

Table 3. The impact of Re. β = 0.1, overlap = 8, DOF = 589,652, np = 128.

Re Newton GMRES Time
Energy Dissipation

Init. Opt. Reduction
100 4 346.75 456.83 1.17 1.13 3.42%
200 4 372.00 470.16 0.65 0.62 4.62%
300 6 671.00 871.19 12.56 11.80 6.05%
600 7 721.71 1035.84 7.43 6.97 6.19%
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5 Conclusions and Future Work

We developed a parallel one-shot LNKSz for two-dimensional shape optimization
problems governed by incompressible Navier-Stokes equations. We tested the algo-
rithms for an artery bypass design problem with more than 900,000 DOF and up to
512 processors. The numerical results show that our method is quite robust with re-
spect to the Re and the regularization parameter. The strong scalability is almost ideal
when np is not too large. In the future, we plan to study some multilevel Schwarz
methods which may improve the scalability when np is large.
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